На применении электромагнитных колебаний основана работа электромоторов, электрические лампы в наших квартирах и на улице, холодильник и пылесос работают, используя энергию электромагнитных колебаний. Электромагнитные колебания лежат в основе работы всей электронной аппаратуры, работающей с информацией, принимая, передавая или обрабатывая ее. Это связь, теле- и радиовещание, Интернет, поэтому важно изучить механизм протекания колебаний. Тема нашего урока связана с вынужденными электромагнитными колебаниями, сегодня мы рассмотрим электромагнитное поле и электромагнитные колебания в контуре

Элементы могут быть соединены по-разному, но чаще всего для того, чтобы наблюдать колебания, их соединяют, как показано на рис. 2.

Рис. 2. Колебательный контур LC ()

Параллельно катушке подключается конденсатор, такой контур называется колебательным контуром LC, подчеркивая тем самым, что в состав контура входит конденсатор и катушка индуктивности. Это простейшая система, в которой возникают электромагнитные колебания. Как мы уже знаем, колебания могут возникнуть в случае, если есть определенные условия:

1. Наличие колебательного контура.

2. Электрическое сопротивление должно быть очень маленьким.

3. Заряженный конденсатор.

Это все относится к свободным колебаниям.

Для того чтобы возникли незатухающие колебания - вынужденные колебания, нам в колебательном контуре каждый раз придется сообщать конденсатору дополнительную энергию. Посмотрим, как это выглядит на схеме (рис. 3).

Рис. 3. Колебательный контур вынужденных электромагнитных колебаний ()

В данном случае изображен колебательный контур, конденсатор которого снабжен ключом. Ключ может переключаться в положение 1 или положение 2. При подключении в положение 1 конденсатор подключается к источнику напряжения и получает заряд, то есть конденсатор заряжается. При подключении в положение 2 начинаются колебания в этом колебательном контуре, график этого колебательного контура будет иметь следующий вид (рис. 4).

Рис. 4. График вынужденных электромагнитных колебаний ()

При подключении ключа в положение 2 электрический ток нарастает, меняет свое направление и идет к затуханию, при переключении ключа в положение1 и потом в положение 2 происходит следующий период колебаний. В результате мы наблюдаем картину вынужденных электромагнитных колебаний, протекающих в контуре.

Самым распространенным видом вынужденных электромагнитных колебаний является рамка, вращающаяся в магнитном поле. Это устройство называется генератором переменного тока, а сам переменный ток является вынужденными электромагнитными колебаниями.

Для того чтобы получить незатухающие колебания в контуре, необходимо сделать схему, в которой каждый раз происходила бы зарядка конденсатора, не реже одного периода.

При протекании электрического тока в колебательном контуре каждый раз возникают потери энергии, которые связаны с активным сопротивлением, то есть энергия тратится на нагревание проводов, но есть еще два важных момента потери энергии:

Затраты энергии на действие электромагнитного заряда конденсатора на диэлектрик, который располагается между пластинами. Диэлектрик подвержен воздействию электрического поля, которое возникает внутри конденсатора, и в этом случае часть энергии расходуется;

При протекании электрического тока по контуру создается магнитное поле, которое рассеивает в окружающем пространстве некоторое количество энергии.

Для компенсации этих потерь мы и должны каждый раз сообщать конденсатору энергию.

Эту задачу успешно решили в 1913 году, когда появилась трехэлектродная электронная лампа (рис. 5).

Рис. 5. Трехэлектродная электронная лампа ()

Вынужденные электромагнитные колебания - периодические изменения силы тока и напряжения в электрической цепи.

Электрическая цепь - это не обязательно колебательный контур, но периодические изменения характеристик (силы тока, напряжения, заряда), это и будут вынужденные электромагнитные колебания.

Вынужденные электромагнитные колебания - незатухающие электромагнитные колебания, так как они не прекращаются сколь угодно долгое время, любое время, которое мы запланировали.

Теорию электромагнитного поля сформулировал английский ученый Джеймс Максвелл, ее мы будем рассматривать на дальнейших уроках.

Список литературы

  1. Тихомирова С.А., Яворский Б.М. Физика (базовый уровень) - М.: Мнемозина, 2012.
  2. Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. - М.: Мнемозина, 2014.
  3. Кикоин И.К., Кикоин А.К. Физика-9. - М.: Просвещение, 1990.

Домашнее задание

  1. Дать определение вынужденным электромагнитным колебаниям.
  2. Из чего состоит простейший колебательный контур?
  3. Что необходимо, чтобы колебания были незатухающими?
  1. Интернет-портал Sfiz.ru ().
  2. Интернет-портал Eduspb.com ().
  3. Интернет-портал Naexamen.ru ().












Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цели урока:

  • обучающие : ввести понятия: “электромагнитные колебания”, “колебательный контур”; показать универсальность основных закономерностей колебательных процессов для колебаний любой физической природы; показать, что колебания в идеальном контуре являются гармоническими; раскрыть физический смысл характеристик колебаний;
  • развивающие : развитие познавательных интересов, интеллектуальных и творческих способностей в процессе приобретения знаний и умений по физике с использованием различных источников информации, в том числе средств современных информационных технологий; формирование умений оценивать достоверность естественнонаучной информации;
  • воспитательные : воспитание убежденности в возможности познания законов природы; использования достижений физики на благо развития человеческой цивилизации; необходимости сотрудничества в процессе совместного выполнения задач, готовности к морально-этической оценке использования научных достижений, чувства ответственности за защиту окружающей среды.

Ход урока

I. Оргмомент.

На сегодняшнем уроке мы приступаем к изучению новой главы учебника и тема сегодняшнего урока “Электромагнитные колебания. Колебательный контур”.

II. Проверка домашнего задания.

Начнем наш урок с проверки домашнего задания.

Слайд 2. Тест на повторение пройденного материала и курса 10 класса.

Вам было предложено ответить на вопросы к схеме, изображенной на рисунке.

1. При каком положении ключа SA2 неоновая лампа при размыкании ключа SA1 вспыхнет?

2. Почему неоновая лампа не вспыхивает при замыкании ключа SA1, в каком бы положении ни находился переключатель SA2?

Тест выполняется на компьютере. Один из обучающихся тем временем собирает схему.

Ответ . Неоновая лампа вспыхивает при втором положении переключателя SA2: после размыкания ключа SA1 вследствие явления самоиндукции в катушке течёт убывающий до нуля ток, вокруг катушки возбуждается переменное магнитное поле, порождающее вихревое электрическое поле, которое в течение короткого времени поддерживает движение электронов в катушке. По верхней части цепи через второй диод (он включён в пропускном направлении) протечёт кратковременный ток. В результате самоиндукции в катушке при размыкании цепи появится разность потенциалов на её концах (ЭДС самоиндукции), достаточная для поддержания газового разряда в лампе.

При замыкании ключа SA1(ключ SA2 в положении 1) напряжения источника постоянного тока не хватает для поддержания газового разряда в лампе, поэтому она не загорается.

Давайте проверим правильность ваших предположений. Предложенная схема собрана. Посмотрим, что происходит с неоновой лампой при замыкании и размыкании ключа SA1 при разных положениях переключателя SA2.

(Тест составлен в программе MyTest. Оценка выставляется программой).

Файл для запуска программы MyTest (находится в папке с презентацией)

Тест. (Запустить программу MyTest, открыть файл “Тест”, нажать клавишу F5 для начала теста)

III. Изучение нового материала.

Слайд 3. Постановка задачи: Давайте вспомним что мы знаем о механических колебаниях? (Понятие свободные и вынужденные колебания, автоколебания, резонанс и т.д.) В электрических цепях, так же как и в механических системах, таких как груз на пружине или маятник, могут возникать свободные колебания. На сегодняшнем уроке мы приступаем к изучению таких систем. Тема сегодняшнего урока: “Электромагнитные колебания. Колебательный контур”.

Цели урока

  • введём понятия: “электромагнитные колебания”, “колебательный контур”;
  • покажем универсальность основных закономерностей колебательных процессов для колебаний любой физической природы;
  • покажем, что колебания в идеальном контуре являются гармоническими;
  • раскроем физический смысл характеристик колебаний.

Вспомним вначале какими свойствами должна обладать, система для того чтобы в ней могли возникнуть свободные колебания.

(В колебательной системе должна возникать возвращающая сила и происходить превращение энергии из одного вида в другой, трение в системе должно быть достаточно мало.)

В электрических цепях, так же как и в механических системах, таких как, груз на пружине или маятник, могут возникать свободные колебания.

Какие колебания называются свободными колебаниями?(колебания, которые возникают в системе после выведения её из положения равновесия) Какие колебания называются вынужденными колебаниями? (колебания, происходящие под действием внешней периодически изменяющейся ЭДС)

Периодические или почти периодические изменения заряда, силы тока и напряжения называются электромагнитными колебаниями.

Слайд 4. После того как изобрели лейденскую банку и научились сообщать ей большой заряд с помощью электростатической машины, начали изучать электрический разряд банки. Замыкая обкладки лейденской банки с помощью проволочной катушки, обнаружили, что стальные спицы внутри катушки намагничиваются, но предсказать какой конец сердечника катушки окажется северным полюсом, а какой южным было нельзя. Немалую роль в теории электромагнитных колебаний сыграл немецкий ученый XIX века ГЕЛЬМГОЛЬЦ Герман Людвиг Фердинанд. Его называют первым врачом среди ученых и первым ученым среди врачей. Он занимался физикой, математикой, физиологией, анатомией и психологией, добившись в каждой из этих областей мирового признания. Обратив внимание на колебательный характер разряда лейденской банки, в 1869 году Гельмгольц показал, что аналогичные колебания возникают в индукционной катушке, соединенной с конденсатором (т.е., по существу, создал колебательный контур, состоящий из индуктивности и емкости). Эти опыты сыграли большую роль в развитии теории электромагнетизма.

Слайд 4. Обычно электромагнитные колебания происходят с очень большой частотой, значительно превышающей частоту механических колебаний. Поэтому для их наблюдения и исследования очень удобен электронный осциллограф. (Демонстрация прибора. Принцип его действия на анимации.)

Слайд 4. В настоящее время на смену электронным осциллографам пришли цифровые. О принципах их действия нам расскажет...

Слайд 5. Анимация “Осциллограф”

Слайд 6. Но вернёмся к электромагнитным колебаниям. Простейшей электрической системой, способной совершать свободные колебания, является последовательный RLC-контур. Колебательным контуром называется электрическая цепь, состоящая из последовательно соединённых конденсатора электроёмкостью С, катушки индуктивностью L и электрического сопротивления R. Будем его называть последовательным RLC-контуром.

Физический эксперимент. У нас имеется цепь, схема которой изображена на рисунке 1. Присоединим к катушке гальванометр. Понаблюдаем за поведением стрелки гальванометра после переведения переключателя из положения 1 в положение2. Вы заметили, что стрелка начинает колебаться, но эти колебания в скором времени затухают. Все реальные контуры содержат электрическое сопротивление R. За каждый период колебаний часть электромагнитной энергии, запасенной в контуре, превращается в джоулево тепло, и колебания становятся затухающими. Рассматривается график затухающих колебаний.

Как же происходят свободные колебания в колебательном контуре?

Рассмотрим случай, когда сопротивление R=0 (модель идеального колебательного контура). Какие же процессы происходят в колебательном контуре?

Слайд 7. Анимация “Колебательный контур”.

Слайд 8. Перейдем к количественной теории процессов в колебательном контуре.

Рассмотрим последовательный RLC-контур. Когда ключ K находится в положении 1, конденсатор заряжается до напряжения . После переключения ключа в положение 2 начинается процесс разрядки конденсатора через резистор R и катушку индуктивности L. При определенных условиях этот процесс может иметь колебательный характер.

Закон Ома для замкнутой RLC-цепи, не содержащей внешнего источника тока, записывается в виде

где – напряжение на конденсаторе, q – заряд конденсатора, – ток в цепи. В правой части этого соотношения стоит ЭДС самоиндукции катушки. Если в качестве переменной величины выбрать заряд конденсатора q(t), то уравнение, описывающее свободные колебания в RLC-контуре, может быть приведено к следующему виду:

Рассмотрим случай, когда в контуре нет потерь электромагнитной энергии (R = 0). Введем обозначение: . Тогда

(*)

Уравнение (*) – основное уравнение, описывающее свободные колебания в LC-контуре (идеальном колебательном контуре) в отсутствие затухания. По виду оно в точности совпадает с уравнением свободных колебаний груза на пружине или нити в отсутствие сил трения.

Это уравнение мы с вами записывали при изучении темы “Механические колебания”.

В отсутствие затухания свободные колебания в электрическом контуре являются гармоническими, то есть происходят по закону

q(t) = q m cos( 0 t + 0).

Почему? (Так как это единственная функция вторая производная от которой равна самой функции. Кроме того cos0 =1, а значит q(0)=q m)

Амплитуда колебаний заряда q m и начальная фаза 0 определяются начальными условиями, то есть тем способом, с помощью которого система была выведена из состояния равновесия. В частности, для процесса колебаний, который начнется в контуре, изображенном на рисунке 1, после переключения ключа K в положение 2, q m = C, 0 = 0.

Тогда уравнение гармонических колебаний заряда для нашего контура примет вид

q(t) = q m cos 0 t .

Сила тока также совершает гармонические колебания:

Слайд 9. Где – амплитуда колебаний силы тока. Колебания силы тока опережают по фазе на колебания заряда.

При свободных колебаниях происходит периодическое превращение электрической энергии W э, запасенной в конденсаторе, в магнитную энергию W м катушки и наоборот. Если в колебательном контуре нет потерь энергии, то полная электромагнитная энергия системы остается неизменной:

Слайд 9. Параметры L и C колебательного контура определяют только собственную частоту свободных колебаний

.

Учитывая, что , получим .

Слайд 9. Формулу называют формулой Томсона, английского физика Уильяма Томсона (лорда Кельвина), который вывел её в 1853 году.

Очевидно, что период электромагнитных колебаний зависит от индуктивности катушки L и ёмкости конденсатора С. У нас имеется катушка, индуктивность которой можно увеличить с помощью железного сердечника, и конденсатор переменной емкости. Давайте сначала вспомним, как можно изменять емкость такого конденсатора. Напоминаю, это материал курса 10 класса.

Конденсатор переменной емкости состоит из двух наборов металлических пластин. При вращении рукоятки пластины одного набора входят в промежутки между пластинами другого набора. При этом ёмкость конденсатора меняется пропорционально изменению площади перекрывающей части пластин. Если пластины соединены параллельно, то, увеличивая площадь пластин, мы будем увеличивать емкость каждого из конденсаторов, а значит, и ёмкость всей батареи конденсаторов будет увеличиваться. При последовательном соединении конденсаторов в батарею увеличение ёмкости каждого конденсатора влечёт за собой уменьшение ёмкости батареи конденсаторов.

Посмотрим, как зависит период электромагнитных колебаний от емкости конденсатора C и индуктивности катушки L.

Слайд 9. Анимация “Зависимость периода электромагнитных колебаний от L и C”

Слайд 10. Сравним теперь электрические колебания и колебания груза на пружине. Откройте страницу 85 учебника, рисунок 4.5.

На рисунке приведены графики изменения заряда q (t) конденсатора и смещения x (t) груза от положения равновесия, а также графики тока I (t) и скорости груза v (t) за один период T колебаний.

У вас на столах имеется таблица, которую мы заполняли при изучении темы “Механические колебания”. Приложение 2.

Одна строка этой таблицы у Вас заполнена. Воспользовавшись рисунком 2, параграф 29 учебника и рисунком 4.5 на странице 85 учебника заполните оставшиеся строки таблицы.

Чем же схожи процессы свободных электрических и механических колебаний? Давайте посмотрим следующую анимацию.

Слайд 11. Анимация “Аналогия между электрическими и механическими колебаниями”

Полученные сравнения свободных колебаний груза на пружине и процессов в электрическом колебательном контуре позволяют сделать заключение об аналогии между электрическими и механическими величинами.

Слайд 12. Эти аналогии представлены в таблице. Приложение 3.

Такая же таблица имеется у вас на столах и в учебнике на странице 86.

Итак, теоретическую часть мы рассмотрели. Всё ли вам было понятно? Может быть, у кого-то возникли вопросы?

Теперь перейдём к решению задач.

IV. Физкультминутка.

V. Закрепление изученного материала.

Решение задач:

  1. задачи 1, 2, задач части А №1, 6, 8 (устно);
  2. задачи №957 (ответ 5,1 мкГн), №958 (ответ уменьшится в 1, 25 раза) (у доски);
  3. задача части В (устно);
  4. задача №1 части С (у доски).

Задачи взяты из сборника задач для 10-11 классов А.П. Рымкевича и приложения 10. Приложение 4.

VI. Рефлексия.

Обучающиеся заполняют рефлексивную карту.

VII. Подведение итогов урока.

Достигнуты ли цели урока? Подведение итогов урока. Оценивание обучающихся.

VIII. Задание на дом.

Параграфы 27 – 30, № 959, 960, оставшиеся задачи из приложения 10.

Литература:

  1. Мультимедийный курс физики “Открытая физика” версия 2.6 под редакцией профессора МФТИ С.М. Козела.
  2. Задачник 10-11 класс. А.П. Рымкевич, Москва “Просвещение”, 2012 год.
  3. Физика. Учебник для 11 класса общеобразовательных учреждений. Г.Я.Мякишев, Б.Б. Буховцев, В.М. Чаругин. Москва “Просвещение”, 2011 год.
  4. Электронное приложение к учебнику Г.Я.Мякишева, Б.Б. Буховцева, В.М. Чаругина. Москва “Просвещение”, 2011 год.
  5. Электромагнитая индукция. Качественные (логические) задачи. 11 класс, физматпрофиль. С.М. Новиков. Москва “Чистые пруды”, 2007год. Библиотечка “Первого сентября”. Серия “Физика”. Выпуск 1 (13).
  6. http://pitf.ftf.nstu.ru/resources/walter-fendt/osccirc

P.S. Если нет возможности предоставить каждому ученику компьютер, то тест можно провести письменно.

Дата: ___________ Подпись: __________Класс: 9 класс Предмет: физика Учитель Чернобаев А.Ю.

Тема: «ЭЛЕКТРОМАГНИТНЫЕ КОЛЕБАНИЯ»

Цель урока :
Задачи: Воспитательная: воспитать культуру физического труда; внимательность при объяснении нового материала. Образовательная: Дать понятие математическому и пружинному маятнику , изучить понятие электромагнитные колебания и изучить формулу Томсона
Развивающая: способствовать развитию мыслительной деятельности.
Требования к знаниям и умениям: Учащиеся должны знать : -что называется свободным и вынужденным колебанием - что называется колебательным контуром, определение электромагнитных колебаний Учащиеся должны уметь : - вычислять 1, Т, т, к, и на основании формул для периода матем. и пру­жинного маятников; - решать качест­венные задачи, объяснять явления на основе изученного ; - применять формулу Томсона при решении задач
Тип урока: комбинированный урок
Программное обеспечение : учебник, рабочая тетрадь, доска, справочный материал и предлагаемый учителем дополнительный материал.

План:

I Орг. момент II Проверка домашнего задания III Устный опрос по прошедшим темам: «Превращение энергии при колебательном движении» 1.Электромагнитные колебания 2. Формула Томсона 3. Решение задач V Рефлексия VI Подведение итогов VII Домашнее задание

Ход урока:

I Орг. момент II Проверка домашнего задания: III Устный опрос по прошедшим темам: «колебательное движение» - В каком положении кинетическая энергия тела в колебательном движении наибольшая? Почему? - В каком положении потенциальная энергия пружинного маятника наибольшая? Почему? - Чему равна полная энергия колебательного тела в любой точке траектории? - Какие примеры затухающего колебания вы можете привести?IV Изучение нового материала:

ЭЛЕКТРОМАГНИТНЫЕ КОЛЕБАНИЯ

1. Открытие электромагнитных колебаний было неожиданным. После того как изобрели простейший конденсатор и научились сообщать ему большой заряд с помощью электростатической машины, ученые начали наблюдать его электрический заряд. С простейшим конденсатором - лейденской банкой - вы ознакомились в 8 классе. Замыкая обкладки лейденской банки с помощью проволочной катушки, обнаружили, что стальные спицы внутри катушки намагничиваются. В этом ничего странного не было, так как электрический ток и должен намагничивать стальной сердечник катушки. Удивительным было то, что нельзя было предсказать, какой конец намагниченного сердечника катушки окажется северным полюсом, а какой - южным. Опыты, проведенные в одних и тех же условиях, давали различные результаты. Ученые не сразу поняли, что при разрядке конденсатора через катушку возникают колебания. За время разряда конденсатор успевает несколько раз перезарядиться, и электрический ток тоже меняет направление. Из-за этого сердечник может намагничиваться по-разному, и его полюсы поочередно меняются. Итак, при разрядке конденсатора периодически (или почти периодически) изменяются заряд, ток, напряжение, электрические и магнитные поля. Периодическое изменение этих величия называют электромагнитными колебаниями. Получить электромагнитные колебания почти так же просто, как и заставить тело колебаться, подвесив его на пружине. Но наблюдать электромагнитные колебания уже не так просто. Ведь мы непосредственно не видим ни переразрядки конденсатора, ни тока в катушке. К тому же колебания обычно происходят с очень большой частотой. Для наблюдения и исследования электромагнитных колебаний самым подходящим прибором является электронный осциллограф. Электромагнитные колебания возникают в электрической цепи, состоящей из батареи конденсаторов и катушки индуктивности (рис. 89, 6). Цепь, состоящая из последовательно соединенных конденсатора и катушки и позволяющая получать электромагнитные колебания, называется колебательным контуром. Такая установка состоит из источника тока (1), батареи конденсаторов (2), катушки индуктивности (3), электронного осциллографа (4) и переключателя (5). Емкость батареи (С) можно менять, перемещая рукоятку и включая разные конденсаторы. Можно менять и индуктивность (Ь) катушки, включая большее или меньшее число витков обмотки или внося в катушку стальной сердечник. Принципиальная схема такой установки дана на рис. 89, а. При повороте переключателя влево (рис. 89, а, положение б) конденсатор подключается к источнику тока и на его обкладках начинает накапливаться электрический заряд, т.е. конденсатор начинает заряжаться. А если ручку перебросить вправо (положение 7), то источник тока отключается, а к зажимам конденсатора присоединяется обмотка катушки. При этом конденсатор начинает разряжаться через катушку, и по обмотке идет электрический ток.

Такие поочередно изменяющиеся в колебательном контуре процессы можно увидеть на экране осциллографа. В идеальных условиях, когда электрическое сопротивление равно или близко к нулю, на экране можно увидеть свободные электромагнитные колебания (рис. 89, . А в случае, когда электрическое сопротивление контура будет большим, то на экране осциллографа появляется осциллограмма затухающего колебания (рис. 90). При увеличении электрической емкости конденсатора в установке можно увидеть растягивание осциллограммы в горизонтальном направления. Следовательно, с увеличением емкости колебательного контура период электромагнитного колебания возрастает (частота соответственно уменьшается). Когда емкость уменьшается, период колебания тоже уменьшается, а частота, естественно, возрастает. Такой же результат получается при изменении индуктивности катушки в контуре. Физические величины - индуктивность и емкость - вам известны из курса физики для 8 классов. При увеличении индуктивности период колебания возрастает, и, наоборот - при уменьшении индуктивности период сокращается. Этот результат аналогичен изменению периода колебания пружинного маятника при изменении массы груза и жесткости пружины. Таким образом, период свободного электромагнитного колебания в колебательном контуре вычисляется через индуктивность контура (L) и емкость (С) по формуле:

В честь него это выражение называется формулой Томсона. Для того чтобы получить период (Т) в секундах (с), индуктивность (L) должна быть выражена в генри (Гн), а емкость (С) - в фарадах (Ф). Явления в колебательном контуре аналогичны явлениям в пружинном маятнике. Действительно, для того чтобы возникли колебания в пружинном маятнике, пружину надо деформировать (сжать), сообщив ей потенциальную энергию (рис. 91, а). Аналогично, чтобы в колебательном контуре возникли колебания, следует зарядить конденсатор и таким образом сосредоточить в нем энергию электрического поля (рис. 91, 6).

Через четверть периода деформация пружины исчезает, а груз с максимальной скоростью проходит положение равновесия. При этом потенциальная энергия пружины превращается в кинетическую энергию груза (рис. 91, в). Точно так же через четверть периода конденсатор разряжается, и через обмотку катушки течет электрический ток максимальной силы. Энергия электрического поля конденсатора превратилась в энергию магнитного поля катушки (рис. 91, е). Далее груз, продолжая свое движение, растягивает пружину, и к концу полупериода кинетическая энергия груза вновь превращается в потенциальную энергию пружины (рис. 91, д). Аналогично электрические заряды за счет энергии магнитного поля начинают накапливаться на обкладках конденсатора, и к концу полупериода энергия магнитного поля катушки превращается в энергию электрического поля конденсатора (рис. 91, е). Этот процесс вновь повторяется, и к концу периода система возвращается в первоначальное состояние (рис. 91, ж, з, и, к). Таким образом, можно сделать вывод: в цепи, состоящей из конденсатора и катушки индуктивности, при очередной разрядке конденсатора возникают электромагнитные колебания. Решение задач: №3. Для демонстрации медленных электромагнитных колебаний собирается колебательный контур с конденсатором, емкость которого равна 2,5 мкФ. Какова должна быть индуктивность катушки при периоде колебания 0,2 с?

Дано:


2. Какой должна быть длина математического маятника, чтобы период его колебаний был равен 1 с? №4. С каким периодом будет совершать колебания математический маятник длиной 1 м на поверхности Луны? Ускорение свободного падения на Луне 1,62 м/с 2 .Упр.23: №2. Как изменится период колебаний маятника, если переместить его с Земли на луну? Масса Луны в 81 раз меньше массы Земли, а радиус Земли в 3,7 раза больше радиуса Луны. №3. Тело массой 200 г, подвешенное на пружине с жесткостью 16 Н/м колеблется с амплитудой 2 см в горизонтальной плоскости. Определите циклическую частоту колебания тела и энергию системы.Упр.24: №1. Колебательный контур состоит из конденсатора емкостью 250 пФ и катушки индуктивностью 10 мГн. Определите период и частоту свободных колебаний. №2. Необходимо собрать колебательный контур частотой 3 мГц, используя катушку индуктивностью 1,3 мГн. Какова должна быть емкость конденсатора?

V Рефлексия - Что такое математический маятник? - От чего зависит период колебаний математического маятника? - От чего зависит период колебаний тела под действием силы упругости? - Каким образом с помощью маятников приборов находят залежи полезных ископаемых? - Какие колебания называются свободными? - Почему колебания затухают? - Как влияет сила трения на амплитуду колебаний? - Почему затухающие колебания нельзя назвать гармоническими? - Чем определяется собственная частота колебательной системы? - Что такое вынужденные колебания? - С какой частотой происходят вынужденные колебания? - Как зависит амплитуда вынужденных колебаний от частоты? - Какое явление называется резонансом? - Какие примеры применения резонанса вы можете привести? - Что представляет собой колебательный контур? Начертите его схему. - Что необходимо сделать, чтобы в колебательном контуре возникли свободные колебания? - Почему свободные электромагнитные колебания затухают? - Как влияет изменение емкости конденсатора на период свободного колебания в контуре? - Как влияет изменение индуктивности катушки на период свободного колебания в контуре? - Какой формулой выражается период свободных колебаний в колебательном контуре? В каких единицах измеряются величины, входящие в нее?VI Подведение итогов VII Домашнее задание: § 54-55 Упр.45 №2,5 Упр.46 Упр.22:

Радиовещание (т. е. передача звуковой информации на большие расстояния) осуществляется посредством электромагнитных волн, излучаемых антенной радиопередающего устройства. Напомним, что источником электромагнитных волн являются ускоренно движущиеся заряженные частицы. Значит, для того чтобы антенна излучала электромагнитные волны, в ней нужно возбуждать колебания свободных электронов. Такие колебания называются электромагнитными (поскольку они порождают электромагнитное поле, распространяющееся в пространстве в виде электромагнитных волн).

Для создания мощной электромагнитной волны, которую можно было бы зарегистрировать приборами на больших расстояниях от излучающей её антенны, необходимо, чтобы частота волны была не меньше 0,1 МГц (10 5 Гц) 1 . Колебания таких больших частот невозможно получить от генератора переменного электрического тока. Поэтому они подаются на антенну от генератора высокочастотных электромагнитных колебаний, имеющегося в каждом радиопередающем устройстве.

Одной из основных частей генератора является колебательный контур - колебательная система, в которой могут существовать свободные электромагнитные колебания. Колебательный контур состоит из конденсатора (или батареи конденсаторов) и проволочной катушки.

Получить свободные электромагнитные колебания и удостовериться в их существовании можно с помощью установки, изображённой на рисунке 137.

Рис. 137. Установка для получения свободных электромагнитных колебаний

Катушка 4 с сердечником 5 (рис. 137, а) состоит из двух обмоток: первичной 4 1 , (из 3600 витков) и вторичной 4 2 (расположенной поверх первичной в средней её части и имеющей 40 витков).

Первичная обмотка катушки и батарея конденсаторов 2, соединённые друг с другом через переключатель 3, составляют колебательный контур. Вторичная обмотка замкнута на гальванометр 6, который будет регистрировать возникновение колебаний в контуре.

Поставим переключатель в положение 3 1 (рис. 137, б), соединив батарею конденсаторов с источником постоянного тока 1. Батарея зарядится от источника. Перекинем переключатель в положение 3 2 , соединив батарею с катушкой. При этом стрелка гальванометра совершит несколько затухающих колебаний, отклоняясь от нулевого деления то в одну, то в другую сторону, и остановится на нуле.

Чтобы объяснить наблюдаемое явление, обратимся к рисунку 138. Пусть при зарядке от источника тока (переключатель в положении З 1) конденсатор получил некоторый максимальный заряд q m . Допустим, при этом верхняя его обкладка зарядилась положительно, а нижняя - отрицательно (рис. 138, а). Между обкладками возникло напряжение Um и электрическое поле, обладающее энергией Е эл m .

Рис. 138. Объяснение возникновения и существования электромагнитных колебаний в колебательном контуре

При замыкании на катушку (переключатель в положении 3 2) в момент, который примем за начало отсчёта времени, конденсатор начинает разряжаться, и в контуре появляется электрический ток. Сила тока увеличивается постепенно, так как возникший в катушке ток самоиндукции направлен против тока, созданного разряжающимся конденсатором.

Через некоторый промежуток времени t 1 от начала разрядки конденсатор полностью разрядится - его заряд, напряжение между обкладками и энергия электрического поля будут равны нулю (рис. 138, б). Но, согласно закону сохранения энергии, энергия электрического поля не исчезла - она перешла в энергию магнитного поля тока катушки, которая в этот момент достигает максимального значения Е маг m . Наибольшему значению энергии соответствует и наибольшая сила тока I m .

Поскольку конденсатор разряжен, сила тока в контуре начинает уменьшаться. Но теперь ток самоиндукции направлен в ту же сторону, что и ток разряжавшегося конденсатора, и препятствует его уменьшению. Благодаря току самоиндукции к моменту времени 2t 1 от начала разрядки конденсатор перезарядится: его заряд вновь будет равен q m , но теперь верхняя обкладка будет заряжена отрицательно, а нижняя - положительно (рис. 138, в).

Понятно, что через промежуток времени, равный 3t 1 , конденсатор вновь будет разряжен (рис. 138, г), а через 4t l будет заряжен так же, как в момент начала разрядки (рис. 138, д).

За промежуток времени, равный 4t 1 , произошло одно полное колебание. Значит, Т = 4t 1 , где Т - период колебаний (a t 1 , 2 t1, 3t 1 - соответственно четверть, половина и три четверти периода).

При периодическом изменении в катушке 4 1 силы тока и его направления соответственно меняется и создаваемый этим током магнитный поток, пронизывающий катушку 4 2 . При этом в ней возникает переменный индукционный ток, регистрируемый гальванометром. Исходя из того что стрелка гальванометра совершила несколько затухающих колебаний и остановилась на нуле, можно сделать вывод, что электромагнитные колебания тоже были затухающими. Энергия, полученная контуром от источника тока, постепенно расходовалась на нагревание проводящих частей контура. Когда запас энергии иссяк, колебания прекратились.

Напомним, что колебания, происходящие только благодаря начальному запасу энергии, называются свободными. Период свободных колебаний равен собственному периоду колебательной системы, в данном случае периоду колебательного контура. Формула для определения периода свободных электромагнитных колебаний была получена английским физиком Уильямом Томсоном в 1853 г. Она называется формулой Томсона и выглядит так:

Из данной формулы следует, что период колебательного контура определяется параметрами составляющих его элементов: индуктивностью катушки и ёмкостью конденсатора. Например, при уменьшении ёмкости или индуктивности период колебаний должен уменьшиться, а их частота - увеличиться. Проверим это на опыте. Уменьшим ёмкость батареи, отключив от неё несколько конденсаторов. Мы увидим, что колебания стрелки гальванометра участились.

В начале параграфа отмечалось, что подаваемые в антенну высокочастотные колебания необходимы для создания электромагнитных волн. Но для того чтобы волна излучалась в течение длительного времени, нужны незатухающие колебания. Для создания в контуре незатухающих колебаний необходимо восполнять потери энергии, периодически подключая конденсатор к источнику тока. В генераторе это осуществляется автоматически.

Вопросы

  1. Для чего электромагнитные волны подаются в антенну?
  2. Почему в радиовещании используются электромагнитные волны высокой частоты?
  3. Что представляет собой колебательный контур?
  4. Расскажите о цели, ходе и наблюдаемом результате опыта, изображённого на рисунке 137. Каким образом гальванометр мог регистрировать происходящие в этом контуре колебания?
  5. Какие преобразования энергии происходят в результате электромагнитных колебаний?
  6. Почему ток в катушке не прекращается в тот момент, когда конденсатор разряжен?
  7. От чего зависит собственный период колебательного контура? Как его можно изменить?

Упражнение 42

Колебательный контур состоит из конденсатора переменной ёмкости и катушки. Как получить в этом контуре электромагнитные колебания, периоды которых отличались бы в 2 раза?

1 Дальность распространения волны зависит от её мощности Р, а мощность - от частоты v: P - v 4 . Из этой зависимости следует, что уменьшение частоты волны, например, всего лишь в 2 раза приведёт к уменьшению её мощности в 16 раз и соответствующему уменьшению дальности распространения.